N14 - Equilibrium Le Châtelier's Principle

Link to YouTube Presentation: https://youtu.be/lUdunOfj-OE

N14 - Equilibrium

Le Châtelier's Principle

Target: I can describe how a reaction shifts in response to a change in conditions (a stress) in order to reach a new equilibrium position.

Le Châtelier's Principle

Le Châtelier's Principle

Guides us in predicting the effect various changes in conditions have on the position of equilibrium.

If a system at equilibrium is disturbed, the position of equilibrium will shift to minimize the disturbance.

You don't go back to the ORIGINAL equilibrium position, you will find a <u>NEW</u> equilibrium position.

Le Châtelier's Principle

Equilibrium Position = numerical K value

LOTS of []'s lead to same K value!

$$\frac{2}{1} = 2$$
 $\frac{4}{2} = 2$
 $\frac{3}{1.5} = 2$

What is the only thing that changes K value ?

TEMPERATURE!

- Exothermic
 - Increase temp, shift left, make more reactants K ↓
 - Decrease temp, shift right, make more products K 1
- Endothermic
 - –Increase temp, shift right, make more products K ↑
 - Decrease temp, shift left, make more reactants K

Don't forget BEFORE vs DURING vs AFTER!

- NOT at equilibrium YET....calculate Q!
- Which way are you shifting DURING a stress?
- How much of everything do you have at the end after the adjustment?

Can be really hard to talk about. Remember when talking about comparisons you need to ACTUALLY compare! This time that might include TIME aspects! Before, during, or after! There is more of _____ THAN before the stress was applied

[N₂] **DURING** the Stress no longer @ equilibrium

Didn't get back to starting point, but better than during the stress!

[N₂] AFTER reacting a <u>NEW</u> equilibrium position So comparing BEFORE stressor to AFTER stressor, there is a <u>SLIGHT</u> increase to the thing you added extra of.

[N₂] **BEFORE Stress Applied** @ <u>ORIGINAL</u> equilibrium position

A closed container of ice and water is at equilibrium. Then, the temperature is raised.

Ice + Energy ≒ Liquid Water

The system temporarily shifts to the <u>right</u> to reach a new equilibrium.

A closed container of N_2O_4 and NO_2 is at equilibrium. NO₂ is added to the container.

$N_2O_4(g) + Energy \leftrightarrows 2NO_2(g)$

The system temporarily shifts to the <u>left</u> to reach a new equilibrium.

A closed container of water and its vapor is at equilibrium. Vapor is removed from the system.

water + Energy 🕁 vapor

The system temporarily shifts to the <u>right</u> to reach a new equilibrium.

A closed container of N_2O_4 and NO_2 is at equilibrium. The pressure is increased.

 $N_2O_4(g) + Energy \leftrightarrows 2 NO_2(g)$

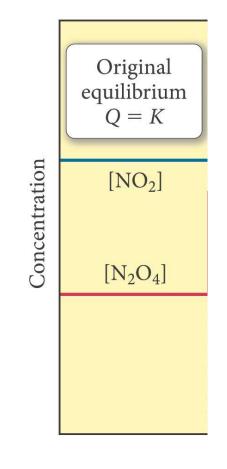
The system temporarily shifts to the <u>left</u> to reach a new equilibrium, because there are *fewer moles <u>of gas</u> on that side of the equation.*

The Effect of Volume Changes on Equilibrium

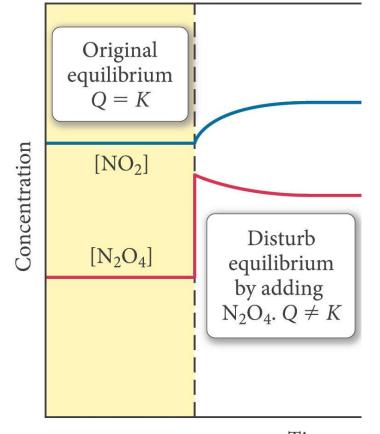
Increase Pressure, Lower Volume Equilibrium will shift to the side that has fewer moles of gas particles. Helps to relieve the pressure.

$$\begin{array}{rrrr} \mathsf{N}_{2(g)} + 3\mathsf{H}_{2(g)} & \leftrightarrow & 2\mathsf{N}\mathsf{H}_{3(g)} \\ \mathbf{4} \mbox{ moles} & & \mathbf{2} \mbox{ moles} \\ & \mathbf{6} \mbox{ gas} & & \mathbf{6} \mbox{ gas} \end{array}$$

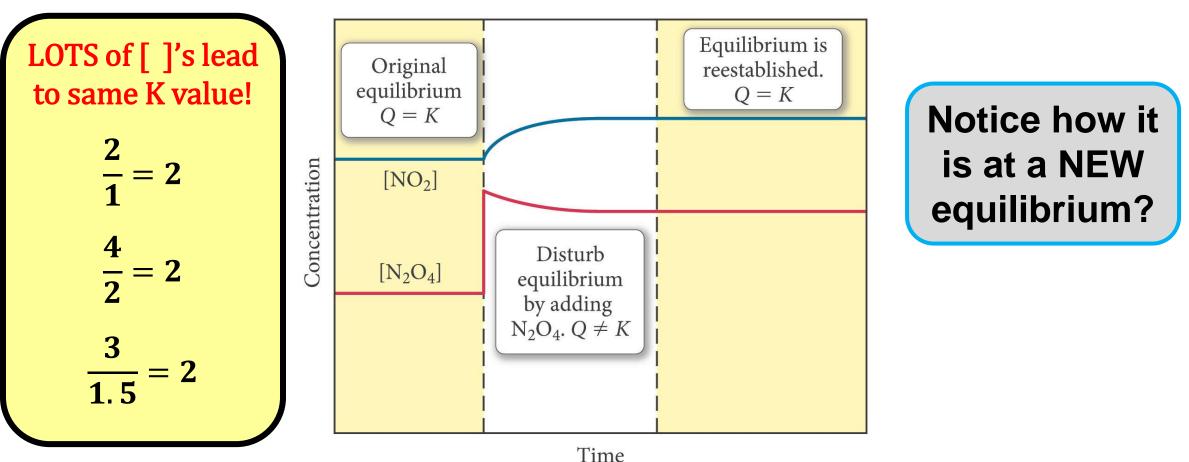
Reaction would shift to right, make more products


The Effect of Volume Changes on Equilibrium

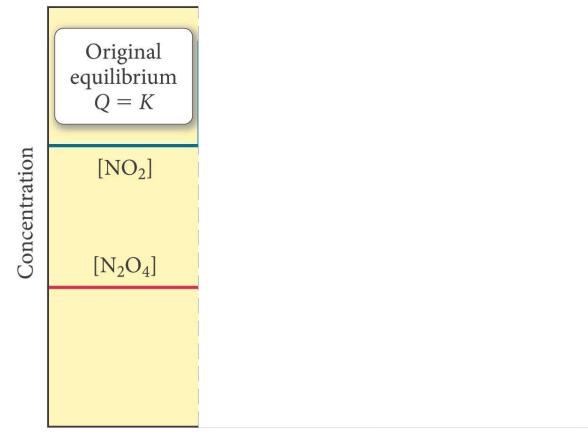
Decrease Pressure, Increase Volume Equilibrium will shift to the side that has *more moles of gas particles*. Helps to raise the pressure.


$$\begin{array}{rrrr} \mathsf{N}_{2(g)}+\mathsf{3H}_{2(g)}&\leftrightarrow& \mathsf{2NH}_{3(g)}\\ \mathbf{4\ moles}&&\mathbf{2\ moles}\\ \mathbf{of\ gas}&&\mathbf{of\ gas}\end{array}$$

Reaction would shift to left, make more reactants

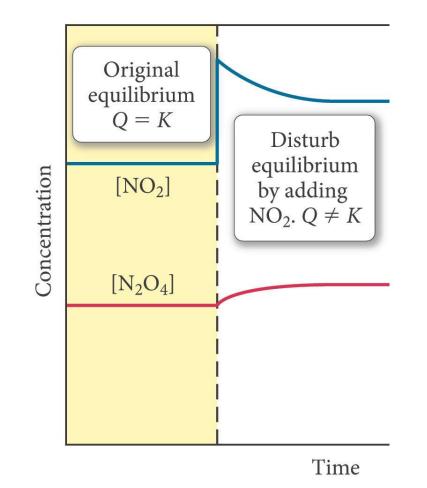

Time

When N_2O_4 is added, some of it decomposes to make more NO_2 .

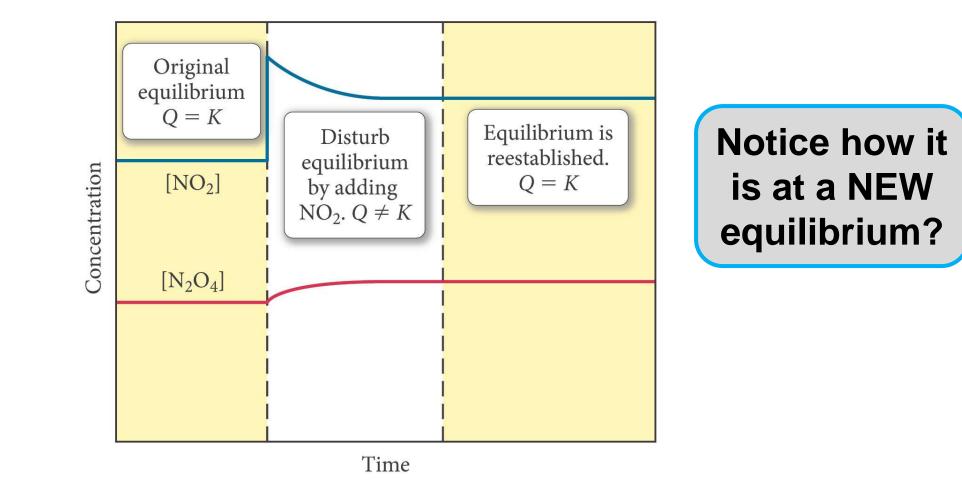


Time

When N_2O_4 is added, some of it decomposes to make more NO_2 .



When N_2O_4 is added, some of it decomposes to make more NO_2 .

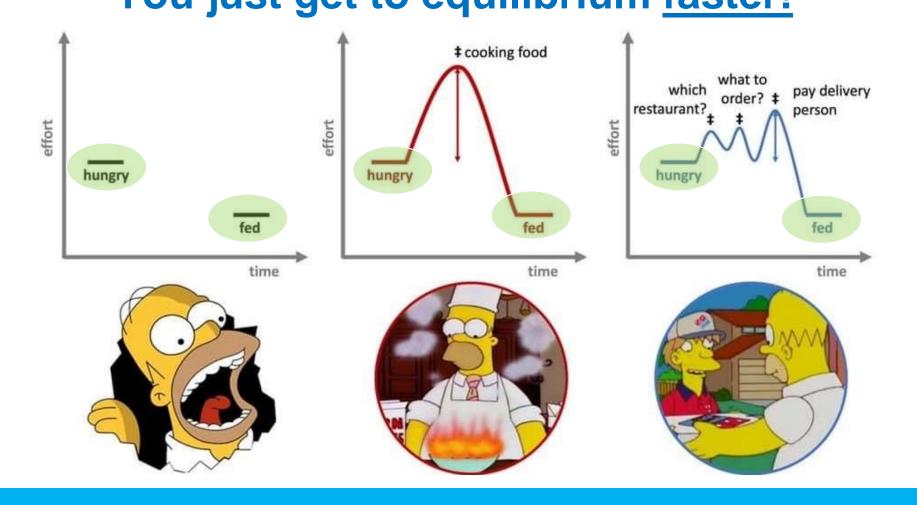


Time

When NO_2 is added, some of it decomposes to make more N_2O_4 .

When NO_2 is added, some of it decomposes to make more N_2O_4 .

When NO_2 is added, some of it decomposes to make more N_2O_4 .


The Effects of Catalysts – Careful!

- Provide an alternative, more efficient mechanism.
- Works for both forward and reverse reactions.
- Affect the rate of the forward <u>and</u> reverse reactions by the same factor.
- Therefore, catalysts do *not* affect the **position** of equilibrium.

They do not change the <u>position</u> of equilibrium... You just get to equilibrium <u>faster!</u>

The Effects of Catalysts

They do not change the <u>position</u> of equilibrium... You just get to equilibrium <u>faster!</u>

Sometimes there are REALLY tricky ones 🛞

Adding a (I) doesn't affect the equilibrium <u>position</u> right??? **BUT...**

What if you add water as your liquid??? It changes the CONCENTRATION of what you have...

Does that affect **Q** ???

YES! Q changes! K stays the same!

So you will end up making more reactants or products depending on the equation. SO tricky! Have to be careful...not everything is tricky, but sometimes they are!

Things that Make a Good Equilibrium Answer

- 1) **IDENTIFY** the stressor
- 2) WHAT will change because of that stressor?
- 3) WHY will things change?
- 4) HOW does the change happen?
- 5) IMPACT on [], Partial Pressures, K_{eq} etc

(We will do a warmup where we use this as our format!)

Link to YouTube Presentation https://youtu.be/IUdunOfj-OE